Firing Variability Is Higher than Deduced from the Empirical Coefficient of Variation
نویسندگان
چکیده
A convenient and often used summary measure to quantify the firing variability in neurons is the coefficient of variation (CV), defined as the standard deviation divided by the mean. It is therefore important to find an estimator that gives reliable results from experimental data, that is, the estimator should be unbiased and have low estimation variance. When the CV is evaluated in the standard way (empirical standard deviation of interspike intervals divided by their average), then the estimator is biased, underestimating the true CV, especially if the distribution of the interspike intervals is positively skewed. Moreover, the estimator has a large variance for commonly used distributions. The aim of this letter is to quantify the bias and propose alternative estimation methods. If the distribution is assumed known or can be determined from data, parametric estimators are proposed, which not only remove the bias but also decrease the estimation errors. If no distribution is assumed and the data are very positively skewed, we propose to correct the standard estimator. When defining the corrected estimator, we simply use that it is more stable to work on the log scale for positively skewed distributions. The estimators are evaluated through simulations and applied to experimental data from olfactory receptor neurons in rats.
منابع مشابه
Cross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation
Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...
متن کاملModified signed log-likelihood test for the coefficient of variation of an inverse Gaussian population
In this paper, we consider the problem of two sided hypothesis testing for the parameter of coefficient of variation of an inverse Gaussian population. An approach used here is the modified signed log-likelihood ratio (MSLR) method which is the modification of traditional signed log-likelihood ratio test. Previous works show that this proposed method has third-order accuracy whereas the traditi...
متن کاملInfluence of temporal correlation of synaptic input on the rate and variability of firing in neurons.
The spike trains that transmit information between neurons are stochastic. We used the theory of random point processes and simulation methods to investigate the influence of temporal correlation of synaptic input current on firing statistics. The theory accounts for two sources for temporal correlation: synchrony between spikes in presynaptic input trains and the unitary synaptic current time ...
متن کاملIntegrate-and-Fire Neurons Driven by Correlated Stochastic Input
Neurons are sensitive to correlations among synaptic inputs. However, analytical models that explicitly include correlations are hard to solve analytically, so their influence on a neuron's response has been difficult to ascertain. To gain some intuition on this problem, we studied the firing times of two simple integrate-and-fire model neurons driven by a correlated binary variable that repres...
متن کاملGenetic variability and relationship of pod and seed traits in Pongamia Pinnata (L.) Pierre., a potential agroforestry tree
Screening of twenty-four candidate plus trees from naturally available Pongamia pinnata genetic resources was carried out to elucidate the genetic variation and relationship of pod and seed traits on germination capacity to select the best planting material for higher productivity. The experiment conducted at Forest Research Centre, Institute of Forest Productivity Mandar, Ranchi during 2005-20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2011